考研数学大纲2022在哪里看 考研数学大纲去哪里看 考研数学大纲在哪看

各位老铁们好,相信很多人对考研数学大纲去哪里看都不是特别的了解,因此呢,今天就来为大家分享下关于考研数学大纲去哪里看以及考研数学大纲在哪看的问题知识,还望可以帮助大家,解决大家的一些困惑,下面一起来看看吧!

本文目录

  1. 数学二考研大纲在哪里看
  2. 考研大纲在哪里看
  3. 考研数学考试大纲在哪查
  4. 考研数学大纲 哪里找到

一、数学二考研大纲在哪里看

数学二考研大纲有以下3种查看方法。

1.招生信息网站一些招生信息网站,例如考研网上报名的研招网、考研信息等网站都有更新考研大纲的相关信息,在考研大纲公布后考生们可以登录这类网站去寻找自…

2.报考学校官网每年这个时候,学校就会发布招生简章和考生大纲,所以对于目标院校的官网一定要时刻关注,在这里下载的考研大纲最新切准确度高,这是大部分同…

3.社交平台下载随着网络的不断发展,现在信息获取渠道也变得更加丰富,一些微博、论坛、贴吧之类的社交平台,通过资料分享就可以查看考研大纲。

《考研数学二大纲》是2013年高等教育出版社出版的图书,作者是全国硕士研究生入学统一考试辅导用书编委会。该书为全国硕士研究生入学统一考试数学二考研大纲解析。适用于2013年以后未经变更大纲前的所有的数学二的考研数学。

函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:

函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质。

二、考研大纲在哪里看

网上各大平台都会有考研大纲或是解析,如需纸质版的大纲需要在书店里购买,专业课的考研大纲在目标院校的官网(研究生院)里可以找得到。考研大纲是由教育部考试中心组织编写、高等教育出版社出版、官方发布的权威考研指南。

考研大纲出来的时候不少平台上面都会发布相关的文章,主要是详细解析今年的考研大纲相较于去年有了哪一些的变化,考生需要重点关注这些变化,做好相应的调整,以应对研究生初试考试。或是说有人买了纸质版大纲分享扫描版的到这些平台上也是可以下载的。

我们可以在书店里找到教育部考试中心编写的考研大纲,基本上每年的9月份左右大纲就会出来了,大部分人以为大纲是资讯信息,其实大纲是正规出版的图书。这也是最正规的考研大纲获取方式。比如在淘宝上搜索”研究生招生考试大纲”即可看到纸质版的考研大纲了。

3、由于专业课是每个院校自命题的,因此只需要在目标院校的研究生官网当中就能够找到专业课考试大纲了。

三、考研数学考试大纲在哪查

1、研究生考试大纲在中国研究生招生信息网可以查询。

2、考研数学每年有三张不同的试卷,分别是数学一、数学二、数学三,这三张试卷既有联系也有区别

3、考研数学一的考试科目有:高等数学、线性代数、概率论与数理统计。各科目所占比例为:等数学56%、线性代数22%、概率论与数理统计22%。

4、考研数学二的考试科目有:高等数学、线性代数。在试题中,各科目所占比例为:高等数学78%、线性代数22%。

5、考研数学三考试科目有:微积分、线性代数、概率论与数理统计。各科目所占比例为:高等数学56%、线性代数22%、概率论与数理统计22%。

6、从上述对比中不难看出,数一、数二、数三最大的区别是数学二缺少了概率论与数理统计,而数一和数三不论考试科目还是分值比例都是相同的。

7、考研数学一、二、三在试卷中的题型结构都是一样的。分别为:单项选择题8小题,每题4分,共32分;填空题 6小题,每题4分,共24分;解答题(包括证明题) 9小题,共94分。

8、数一、数二、数三在考试内容上的差别主要体现在考查范围上,其中数学一考查范围最广,数学二考查范围最窄。

9、具体来说,在高等数学中,数一、数二、数三的主要区别在于:空间解析几何、多元函数积分学(二重积分以外),仅数学一考查;无穷级数,仅数学一、数学三考查;微积分的物理应用,仅数学一、数学二考查;微积分的经济学应用,仅数学三考查。

四、考研数学大纲 哪里找到

现在15年的还没有(貌似9月出),给你个14年的,记得采纳哦

高等数学、线性代数、概率论与数理统计

试卷满分为150分,考试时间为180分钟.

解答题(包括证明题) 9小题,共94分

2.了解函数的有界性、单调性、周期性和奇偶性.

3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.

4.掌握基本初等函数的性质及其图形,了解初等函数的概念.

5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.

6.掌握极限的性质及四则运算法则.

7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.

8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.

9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.

10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.

1.理解导数和微分的概念,理解导数与微分的关系,理解函数的可导性与连续性之间的关系.

2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.

3.了解高阶导数的概念,会求简单函数的高阶导数.

4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.

5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.

6.掌握用洛必达法则求未定式极限的方法.

7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.

8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数。当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.

9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.

1.理解原函数的概念,理解不定积分和定积分的概念.

2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.

3.会求有理函数、三角函数有理式和简单无理函数的积分.

4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.

5.了解反常积分的概念,会计算反常积分.

6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.

1.理解空间直角坐标系,理解向量的概念及其表示.

2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.

3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.

4.掌握平面方程和直线方程及其求法.

5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.

6.会求点到直线以及点到平面的距离.

7.了解曲面方程和空间曲线方程的概念.

8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.

9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.

1.理解多元函数的概念,理解二元函数的几何意义.

2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.

3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.

4.理解方向导数与梯度的概念,并掌握其计算方法.

5.掌握多元复合函数一阶、二阶偏导数的求法.

6.了解隐函数存在定理,会求多元隐函数的偏导数.

7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.

9.理解多元函数极值和条件极值的概念,并会解决一些简单的应用问题.

1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.

2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).

3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.

5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.

6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.

7.了解散度与旋度的概念,并会计算.

8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、、形心、转动惯量、引力、功及流量等).

1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.

2.掌握几何级数与级数的收敛与发散的条件.

3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.

4.掌握交错级数的莱布尼茨判别法.

5.了解任意项级数绝对收敛与条件收敛的概念

6.了解函数项级数的收敛域及和函数的概念.

7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.

8.会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.

9.了解函数展开为泰勒级数的充分必要条件.

10.掌握麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开成幂级数.

11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.

1.了解微分方程及其阶、解、通解、初始条件和特解等概念.

2.掌握变量可分离的微分方程及一阶线性微分方程的解法.

3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.

4.会用降阶法解下列形式的微分方程:.

5.理解线性微分方程解的性质及解的结构.

6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.

7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.

9.会用微分方程解决一些简单的应用问题.

文章到此结束,如果本次分享的考研数学大纲去哪里看和考研数学大纲在哪看的问题解决了您的问题,那么我们由衷的感到高兴!

版权声明

返回顶部